M17/4/PHYSI/SP3/ENG/TZ2/XX/M

Markscheme

May 2017

Physics

Standard level

Paper 3

18 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

- 3 -

Section A

Q	uestic	on	Answers	Notes	Total
1.	а		 it is not possible to draw a straight line through all the error bars OR the line of best-fit is curved/not a straight line ✓ 	Treat as neutral any reference to the origin. Allow "linear" for "straight line".	1
	b	i	$d = 0.35 \pm 0.01 \text{ AND } \Delta d = 0.05 \pm 0.01 \text{ cm} \text{ solution}$ $\ll \frac{\Delta d}{d} = \frac{0.05}{0.35} \text{ solution} = 0.14$ OR $\frac{1}{7} \text{ or } 14 \% \text{ or } 0.1 \text{ solution}$	Allow final answers in the range of 0.11 to 0.18. Allow [1 max] for 0.03 to 0.04 if $\lambda = 5 \times 10^6$ m is used.	2
	b	ii	28 to 30 % ✓	Allow ECF from (b)(i), but only accept answer as a %	1
	с	i	a: m² ✓ b: m ✓	Allow answers in words	2

Q	uesti	on	Answers	Notes	Total
	С	ii	ALTERNATIVE 1 – if graph on page 4 is used		
			$d^2 = 0.040 \times 10^{-4} \text{ wm}^2 \text{ w}$		
			$d = 0.20 \times 10^{-2} \text{ m} \text{ s} \text{ f}$		
				For MP1 accept answers in range of 0.020 to 0.060 « cm ² » if they fail to use given value of "a".	2
				For MP2 accept answers in range 0.14 to 0.25 « cm » .	
			ALTERNATIVE 2 – if graph on page 2 is used		
			any evidence that d intercept has been determined \checkmark		
			<i>d</i> = 0.20 ± 0.05 « cm » ✓		

Q	uestic	on	Answers	Notes	Total
2.	a		correct labelling of both instruments ✓	Cell with internal resistance	1
	b		$V = E - Ir \checkmark$	For MP1 – do not award if only $R = \frac{V}{I}$ is used.	
			large triangle to find gradient and correct read-offs from the line OR use of intercept $E = 1.5$ V and another correct data point \checkmark	For MP2 points at least 1A apart must be used.	3
			internal resistance = 0.60 Ω \checkmark	For MP3 accept final answers in the range of 0.55 $arOmega$ to 0.65 $arOmega$.	

Question		on	Answers	Notes	Total
	С	i	a non-zero reading when a zero reading is expected/no current is flowing <i>OR</i> a calibration error ✓	<i>OWTTE</i> <i>Do not accept just "systematic error".</i>	1
	С	ii	the error causes «all» measurements to be high/different/incorrect ✓ effect on calculations/gradient will cancel out <i>OR</i> effect is that value for <i>r</i> is unchanged ✓	Award [1 max] for statement of "no effect" without valid argument. OWTTE	2

-6-

Section B

-7-

Option A — Relativity

Question		Answers	Notes	Total
3.	a	the speed of light is a universal constant/invariant <i>OR</i>		4
		<i>c</i> does not depend on velocity of source/observer ✓ electric and magnetic fields/forces unified/frame of reference dependant ✓		1 max
	b	observer X will measure zero «magnetic or electric» force ✓ observer Y must measure both electric and magnetic forces ✓ which must be equal and opposite so that observer Y also measures zero force ✓	Allow [2 max] for a comment that both X and Y measure zero resultant force even if no valid explanation is given.	3

Q	uestion	Answers	Notes	Total	
Q 4.	uestion	Answers ALTERNATIVE 1 — for answers in terms of time overall idea that more muons are detected at the ground than expected «without time dilation» \checkmark « Earth frame transit time = $\frac{2000}{0.98c}$ » = 6.8 « µs » \checkmark	Notes Accept answers from one of the alternatives.	Total	
		« Earth frame dilation of proper half-life = $2.2 \mu s \times 5 \gg = 11 \text{ems} \gg 0R$ « muon's proper transit time = $\frac{6.8 \mu s}{5} \gg = 1.4 \text{ems} \gg \checkmark$		3	
		ALTERNATIVE 2 – for answers in terms of distance overall idea that more muons are detected at the ground than expected «without time dilation» \checkmark « distance muons can travel in a proper lifetime = 2.2 µs × 0.98 <i>c</i> » = 650 «m» \checkmark			
		« Earth frame lifetime distance due to time dilation = 650 m×5» = 3250 «m» <i>OR</i> « muon frame distance travelled = $\frac{2000}{5}$ » = 400 «m» ✓			

https://xtrer				
nepa	Q	uestic	on	Ans
pe.rs/	5.	а	i	the gamma factor is $\frac{5}{3}$ o
				$L = \frac{450}{\frac{5}{3}} = 270 \text{ wm} \text{ w}$
		а	ii	$u' = \left(\frac{u - v}{1 - \frac{uv}{c^2}}\right) = \frac{0.20c - 0}{1 - 0.20\times c^2}$

- 9 -

Q	uestic	on	Answers	Notes	
5.	а	i	the gamma factor is $\frac{5}{3}$ or 1.67 \checkmark $L = \frac{450}{\frac{5}{3}} = 270 \text{ m} \text{ m}$	Allow ECF from MP1 to MP2.	2
	a	ii	$u' = \left(\frac{u - v}{1 - \frac{uv}{c^2}} \right) = \left(\frac{0.20c - 0.80c}{1 - 0.20 \times 0.80} \right)$ OR $0.2c = \frac{0.80c + u'}{1 + 0.80u'} \checkmark$ $u' = \left(- \right) 0.71c \checkmark$	Check signs and values carefully.	2
	b	i	$\Delta t' = \ll \gamma \left(\Delta t - \frac{v \Delta x}{c^2} \right) = \gg \frac{5}{3} \times \left(0 - \frac{(0.80c \times 9000)}{c^2} \right) \checkmark$ $\Delta t' = \ll -\gg 4.0 \times 10^{-5} \ll s \gg \checkmark$	Allow ECF for use of wrong γ from (a)(i).	2
	b	ii	lamp 2 turns on first ✔	Ignore any explanation	1

Question		on	Answers	Notes	Total
	С	i	x coordinate as shown ✓	Labels must be clear and unambiguous.	
			<i>ct</i> coordinate as shown ✓	Construction lines are optional.	
			space station <i>ct</i> -axis event 2 1.0 m rocket <i>x'</i> -axis space station <i>r</i> -axis		2
	с	ii	«in any other frame» <i>ct</i> is greater \checkmark	MP1 is a statement	2
			the interval $ct' = 1.0 \ll m$ is proper time OR ct is a dilated time OR $ct = \gamma ct' \ll \gamma \gg \checkmark$	MP2 is an explanation	
	с	iii	use of $c^{2}t^{2} - x^{2} = c^{2}t'^{2} - x'^{2}$	for MP1 equation must be used.	
			$c^{2}t^{2} - x^{2} = 1^{2} - 0^{2} = 1 \ll m^{2} \gg \checkmark$	Award [2] for correct answer that first finds x (1.33 m) and ct (1.66 m)	2

Option B — Engineering physics

Question		on	Answers	Notes	Total
6.	а	i	zero ✓		1
	а	ii	the torque of each force is $9.60 \times 10^3 \times 6.0 = 5.76 \times 10^4$ «Nm» \checkmark	Allow a one-step solution.	2
			so the net torque is $2 \times 5.76 \times 10^4 = 1.15 \times 10^5$ «Nm» ✓		L
	b		the angular acceleration is given by $\frac{1.15 \times 10^5}{1.44 \times 10^4} \approx 8.0 \text{s}^{-2} \gg \checkmark$		2
			$\omega = \ll \alpha t = 8.0 \times 2.00 = \gg 16 \ll s^{-1} \gg \checkmark$		
	С	i	$1.44 \times 10^4 \times 16.0 = (1.44 \times 10^4 + 4.80 \times 10^3) \times \omega$	Allow ECF from (b).	2
			$\omega = 12.0 \mathrm{s}^{-1} \mathrm{s}^{-1} \mathrm{s}^{-1}$		2
	С	ii	initial KE $\frac{1}{2} \times 1.44 \times 10^4 \times 16.0^2 = 1.843 \times 10^6 \text{ «J» }$	Allow ECF from part (c)(i).	
			final KE $\frac{1}{2}$ × (1.44 × 10 ⁴ + 4.80 × 10 ³) × 12.0 ² = 1.382 × 10 ⁶ «J» ✓		3
			loss of KE = 4.6×10^5 «J» \checkmark		

- 11 -

Question		on	Answers	Notes	Total
7.	а	i	$\Delta U = 0$ so $\mathbf{Q} = \Delta U + W = 0 + 416 = 416 \text{ «J» }$	Answer given, mark is for the proof.	1
	а	11	ALTERNATIVE 1 use $pV^{\frac{5}{3}} = c$ to get $TV^{\frac{2}{3}} = c$ \checkmark hence $T_{\rm C} = T_{\rm A} \left(\frac{V_{\rm A}}{V_{\rm C}}\right)^{\frac{2}{3}} = 612 \times 0.5^{\frac{2}{3}} = 385.54$ \checkmark « $T_{\rm C} \approx 386$ K»	Answer of 386K is given. Look carefully for correct working if answers are to 3 SF.	2
			ALTERNATIVE 2 $P_{\rm C}V_{\rm C}^{\gamma} = P_{\rm A}V_{\rm A}^{\gamma}$ giving $P_{\rm C} = 1.26 \times 10^6$ «Pa» \checkmark $\frac{P_{\rm C}V_{\rm C}}{T_{\rm C}} = \frac{P_{\rm A}V_{\rm A}}{T_{\rm A}}$ giving $T_{\rm C} = 1.26 \times \frac{612}{2} = 385.54$ «K» \checkmark « $T_{\rm C} \approx 386$ K»	There are other methods: Allow use of $P_{\rm B} = 2 \times 10^6$ « Pa » and $\frac{P}{T}$ is constant for BC. Allow use of $n = 0.118$ and $T_{\rm C} = \frac{P_{\rm C}V_{\rm C}}{nR}$.	
	a	iii	$Q = \Delta U + W = \frac{3}{2} \frac{P_{A}V_{A}}{T_{A}} \Delta T + 0 \checkmark$ $Q = \frac{3}{2} \times \frac{4.00 \times 10^{6} \times 1.50 \times 10^{-4}}{612} \times (386 - 612) \checkmark$ $\ll -332 \text{ J} \gg$	Answer of 330 J given in the question. Look for correct working or more than 2 SF.	2

(continued...)

(Question 7 continued)

Question		on	Answers	Notes	Total
	а	iv	$e = \frac{Q_{in} - Q_{out}}{Q_{in}} = \frac{416 - 332}{416} \checkmark$ $e = 0.20 \checkmark$	Allow $\frac{416 - 330}{416}$. Allow e =0.21.	2
	b		entropy is largest at B \checkmark entropy increases from A to B because $T = \text{constant}$ but volume increases so more disorder or $\Delta S = \frac{Q}{T}$ and $Q > 0$ so $\Delta S > 0 \checkmark$ entropy is constant along CA because it is adiabatic, $Q = 0$ and so $\Delta S = 0$ <i>OR</i> entropy decreases along BC since energy has been removed, $\Delta Q < 0$ so $\Delta S < 0 \checkmark$		3

Option C — Imaging

Q	uestic	on	Answers	Notes	Total]
8.	a	i	line of correct curvature as shown ✓		1	
	а	II	line of approximately correct curvature as shown ✓	Judged by eye. Allow second wavefront Y, to have "passed" P as this is how this question is being interpreted by some. Ignore any waves beyond Y.	1	

(Question 8 continued)

Question	Answers	Notes	Total
b	 wave travels slower in glass than in air OR RI greater for glass ✓ wavelength less in glass than air ✓ hence wave from Q will cover a shorter distance «than in air» causing the curvature shown ✓ 	OWTTE	2 max
C	realization that the two lenses must have a common focal point \checkmark distance is $12-4.0 = 8.0 \text{ cm} \text{ s} \checkmark$	Accept MP1 from a separate diagram or a sketch on the original diagram. A valid reason from MP1 is expected. Award [1 max] for a bald answer of 12–4=8 «cm».	2

9.	a	states $f_{o} + f_{e} = 90$ AND $\frac{f_{o}}{f_{e}} = 17$ \checkmark solves to give $f_{o} = 85$ AND $f_{e} = 5 \ll m \gg \checkmark$	Both needed. Both needed.	2
	b	angle subtended by Moon is $\frac{0.16}{17} = 0.0094 \text{ «rad » } \checkmark$ $0.0094 = \frac{D}{3.8 \times 10^8} \checkmark$ $D = 3.6 \times 10^6 \text{ «m » } \checkmark$	Allow ECF from MP1. Allow [2] for an answer of 6.1×10^7 «m» if the factor of 17 is missing in MP1.	3
	С	operation day and night ✓ operation at all wavelengths/no atmospheric absorption ✓ operation without atmospheric turbulence/light pollution ✓	Accept any other sensible advantages.	2 max

Question		on	Answers	Notes	Total
10.	а		calculation of critical angle at core–cladding boundary «1.52×sin $\theta_c = 1.48 \gg \theta_c = 76.8^\circ \checkmark$ refraction angle at air–core boundary 90° – 76.8° = 13.2° \checkmark «1.52×sin13.2° = sin <i>A</i> » <i>A</i> = 20.3° \checkmark	Allow ECF from MP1 to MP2 to MP3.	3
	b	i	<i>attenuation</i> : output signal has smaller area ✓ <i>dispersion</i> : output signal is wider than input signal ✓	OWTTE OWTTE	2
	b	ii	attenuation = $\ll 10 \log \frac{I}{I_0} = 10 \log \frac{77}{320} = \gg \ll -\gg 6.2 \ll dB \gg \checkmark$ $\frac{-6.2}{5.1} = \ll -\gg 1.2 \ll dB \text{ km}^{-1} \gg \checkmark$	Allow intensity ratio to be inverted. Allow ECF from MP1 to MP2.	2

Option D — Astrophysics

2			110100	Total
a		<i>core</i> : helium ✓	Accept no other elements.	•
		<i>outer layer</i> : hydrogen ✓		2
b		ratio of masses is $\left(\frac{10^4}{10^{-3}}\right)^{\frac{1}{3.5}} = 10^2 \checkmark$		
		ratio of volumes is $\left(\frac{10}{10^{-1}}\right)^3 = 10^6 \checkmark$		3
		so ratio of densities is $\frac{10^2}{10^6} = 10^{-4}$	Allow ECF for MP3 from earlier MPs	
с	i	line to the right of X, possibly undulating, very roughly horizontal \checkmark	Ignore any paths beyond this as the star disappears from diagram.	1
С	ii	gravitation is balanced by a pressure/force due to neutrons/neutron degeneracy/pauli exclusion principle \checkmark	Do not accept electron degeneracy.	1
с	iii	$L = \sigma A T^{4} = 5.67 \times 10^{-8} \times 4\pi \times (2.0 \times 10^{4})^{2} \times (10^{6})^{4} \checkmark$		
		$L = 3 \times 10^{26} \text{ wW}$ OR $L = 2.85 \times 10^{26} \text{ wW} \text{ wV}$	Allow ECF for [1 max] if πr^2 used (gives 7×10^{25} «W ») Allow ECF for a POT error in MP1.	2
c	iv	$\lambda = \frac{2.9 \times 10^{-3}}{10^6} = 2.9 \times 10^{-9} \text{ mw} \checkmark$ this is an X-ray wavelength \checkmark		2
	b c c c	b c i c ii c iii c iii	b outer layer: hydrogen \checkmark c ratio of masses is $\left(\frac{10^4}{10^{-3}}\right)^{\frac{1}{3.5}} = 10^2 \checkmark$ ratio of volumes is $\left(\frac{10}{10^{-1}}\right)^3 = 10^6 \checkmark$ so ratio of densities is $\frac{10^2}{10^6} = 10^{-4} \checkmark$ c i line to the right of X, possibly undulating, very roughly horizontal \checkmark c ii gravitation is balanced by a pressure/force due to neutrons/neutron degeneracy/pauli exclusion principle \checkmark c iii $L = \sigma AT^4 = 5.67 \times 10^{-8} \times 4\pi \times (2.0 \times 10^4)^2 \times (10^6)^4 \checkmark$ $L = 3 \times 10^{26} \ll W \gg$ OR $L = 2.85 \times 10^{26} \ll W \gg \checkmark$ this is an X-ray wavelength \checkmark	outer layer: hydrogen \checkmark bratio of masses is $\left(\frac{10^4}{10^{-3}}\right)^{\frac{1}{3.5}} = 10^2 \checkmark$ ratio of volumes is $\left(\frac{10}{10^{-1}}\right)^3 = 10^6 \checkmark$ so ratio of volumes is $\left(\frac{10}{10^{-1}}\right)^3 = 10^6 \checkmark$ aciin to the right of X, possibly undulating, very roughly horizontal \checkmark Ignore any paths beyond this as the star disappears from diagram.ciigravitation is balanced by a pressure/force due to neutrons/neutrondegeneracy/pauli exclusion principle \checkmark ciiiiii $2.9 \times 10^{-8} \ll \%$ orciiiiiiiii an X-ray wavelength \checkmark

Question		on	Answers	Notes	Total
12.	а		theory in which all space/time/energy/matter were created at a point/singularity \checkmark at enormous temperature \checkmark with the volume of the universe increasing ever since or the universe expanding \checkmark	OWTTE	2 max
	b		CMB has a black-body spectrum \checkmark wavelength stretched by expansion \checkmark is highly isotropic/homogenous \checkmark but has minor anisotropies predicted by BB model \checkmark $T \ll = 2.7 \text{ K}$ is close to predicted value \checkmark	For MP4 and MP5 idea of "prediction" is needed	2 max
	С	i	$\frac{v}{c} = z \Longrightarrow v = 0.084 \times 3 \times 10^5 = 2.52 \times 10^4 \text{ wkms}^{-1} \text{ w}$ $d = \frac{v}{H_0} = \frac{2.52 \times 10^4}{68} = 370.6 \approx 370 \text{ wkms} \text{ wkms}^{-1}$	Allow ECF from MP1 to MP2.	2
	с	ii	type Ia have a known luminosity/are standard candles \checkmark measure apparent brightness \checkmark determine distance from $d = \sqrt{\frac{L}{4\pi b}} \checkmark$	Must refer to type Ia. Do not accept other methods (parallax, Cepheids)	3

Т