Markscheme

May 2017

Physics

Standard level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question			Answers	Notes	Total
1.	a		it is not possible to draw a straight line through all the error bars OR the line of best-fit is curved/not a straight line \checkmark	Treat as neutral any reference to the origin. Allow "linear" for "straight line".	1
	b	i	$\begin{aligned} & d=0.35 \pm 0.01 \text { AND } \Delta d=0.05 \pm 0.01 « \mathrm{~cm} » \\ & « \frac{\Delta d}{d}=\frac{0.05}{0.35} »=0.14 \end{aligned}$ OR $\frac{1}{7}$ or 14% or $0.1 \checkmark$	Allow final answers in the range of 0.11 to 0.18 . Allow [1 max] for 0.03 to 0.04 if $\lambda=5 \times 10^{6} \mathrm{~m}$ is used.	2
	b	ii	28 to 30 \% \checkmark	Allow ECF from (b)(i), but only accept answer as a \%	1
	c	i	$\begin{aligned} & a: m^{2} \checkmark \\ & b: m \checkmark \end{aligned}$	Allow answers in words	2

(continued...)
(Question 1 continued)

Question		Answers	Notes	Total
C	ii	ALTERNATIVE 1 - if graph on page 4 is used $\begin{aligned} & d^{2}=0.040 \times 10^{-4} « \mathrm{~m}^{2} » \checkmark \\ & d=0.20 \times 10^{-2} \text { «m» } \end{aligned}$ ALTERNATIVE 2 - if graph on page 2 is used any evidence that d intercept has been determined \checkmark $d=0.20 \pm 0.05$ «cm» \checkmark	For MP1 accept answers in range of 0.020 to $0.060 « \mathrm{~cm}^{2} »$ if they fail to use given value of "a". For MP2 accept answers in range 0.14 to 0.25 « cm ».	2

Question		Answers	Notes	Total
2.	a	correct labelling of both instruments \checkmark		1
	b	$V=E-\operatorname{Ir} \checkmark$ large triangle to find gradient and correct read-offs from the line OR use of intercept $E=1.5 \mathrm{~V}$ and another correct data point \checkmark internal resistance $=0.60 \Omega \checkmark$	For MP1 - do not award if only $R=\frac{V}{I}$ is used. For MP2 points at least 1A apart must be used. For MP3 accept final answers in the range of 0.55Ω to 0.65Ω.	3

(Question 2 continued)

| Question | | Answers | Notes | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | c | \mathbf{i} | a non-zero reading when a zero reading is expected/no current is
 flowing
 OR
 a calibration error \checkmark | OWTTE
 Do not accept just "systematic error". |
| | c | ii | the error causes «all» measurements to be high/different/incorrect \checkmark
 effect on calculations/gradient will cancel out
 OR
 effect is that value for r is unchanged \checkmark | Award [1 max] for statement of "no effect" without
 valid argument.
 OWTTE |

Section B

Option A - Relativity

Question		Answers	Notes	Total	
3.	a	the speed of light is a universal constant/invariant OR c does not depend on velocity of source/observer \checkmark electric and magnetic fields/forces unified/frame of reference dependant \checkmark	$\mathbf{1 ~ m a x ~}$		
	b	observer X will measure zero «magnetic or electric» force \checkmark observer Y must measure both electric and magnetic forces \checkmark which must be equal and opposite so that observer Y also measures zero force \checkmark	Allow [2 max] for a comment that both X and Y measure zero resultant force even if no valid explanation is given.	$\mathbf{3}$	

Question			Answers	Notes	Total
5.	a	i	the gamma factor is $\frac{5}{3}$ or $1.67 \checkmark$ $L=\frac{450}{\frac{5}{3}}=270 « m » \checkmark$	Allow ECF from MP1 to MP2.	2
	a	ii	$u^{\prime}=« \frac{u-v}{1-\frac{u v}{c^{2}}}=» \frac{0.20 c-0.80 c}{1-0.20 \times 0.80}$ OR $\begin{aligned} & 0.2 c=\frac{0.80 c+u^{\prime}}{1+0.80 u^{\prime}} \\ & u^{\prime}=«-» 0.71 c \quad \end{aligned}$	Check signs and values carefully.	2
	b	i	$\begin{aligned} & \Delta t^{\prime}=« \gamma\left(\Delta t-\frac{v \Delta x}{c^{2}}\right)=» \frac{5}{3} \times\left(0-\frac{(0.80 c \times 9000)}{c^{2}}\right) \checkmark \\ & \Delta t^{\prime}=«-» 4.0 \times 10^{-5} « s » \checkmark \end{aligned}$	Allow ECF for use of wrong γ from (a)(i).	2
	b	ii	lamp 2 turns on first \checkmark	Ignore any explanation	1

(continued...)
(Question 5 continued)

Question			Answers	Notes	Total
	C	i	x coordinate as shown \checkmark ct coordinate as shown \checkmark	Labels must be clear and unambiguous. Construction lines are optional.	2
	c	ii	«in any other frame» ct is greater \checkmark the interval $c t^{\prime}=1.0$ « m » is proper time OR $c t$ is a dilated time OR $c t=\gamma c t^{\prime} «=\gamma » \checkmark$	MP1 is a statement MP2 is an explanation	2
	C	iii	use of $c^{2} t^{2}-x^{2}=c^{2} t^{\prime 2}-x^{\prime 2}$ $c^{2} t^{2}-x^{2}=1^{2}-0^{2}=1 « m^{2} »$	for MP1 equation must be used. Award [2] for correct answer that first finds $x(1.33 \mathrm{~m})$ and ct (1.66 m)	2

Option B — Engineering physics

Question			Answers	Notes	Total
6.	a	i	zero \checkmark		1
	a	ii	the torque of each force is $9.60 \times 10^{3} \times 6.0=5.76 \times 10^{4}$ «Nm» \checkmark so the net torque is $2 \times 5.76 \times 10^{4}=1.15 \times 10^{5}$ «Nm» \checkmark	Allow a one-step solution.	2
	b		the angular acceleration is given by $\frac{1.15 \times 10^{5}}{1.44 \times 10^{4}} «=8.0 \mathrm{~s}^{-2}$ » \downarrow $\omega=« \alpha t=8.0 \times 2.00=» 16 « \mathrm{~s}^{-1} » \checkmark$		2
	c	i	$\begin{aligned} & 1.44 \times 10^{4} \times 16.0=\left(1.44 \times 10^{4}+4.80 \times 10^{3}\right) \times \omega \checkmark \\ & \omega=12.0 « \mathrm{~s}^{-1} » \checkmark \end{aligned}$	Allow ECF from (b).	2
	c	ii	$\begin{aligned} & \text { initial KE } \frac{1}{2} \times 1.44 \times 10^{4} \times 16.0^{2}=1.843 \times 10^{6} \text { «J» } \\ & \text { final KE } \frac{1}{2} \times\left(1.44 \times 10^{4}+4.80 \times 10^{3}\right) \times 12.0^{2}=1.382 \times 10^{6} \text { «J» } \\ & \text { loss of KE }=4.6 \times 10^{5} \text { «J» } \end{aligned}$	Allow ECF from part (c)(i).	3

Question			Answers	Notes	Total
7.	a	i	$\Delta U=0$ so $Q=\Delta U+W=0+416=416 巛 \mathrm{~J}$ » \checkmark	Answer given, mark is for the proof.	1
	a	ii	ALTERNATIVE 1 use $p V^{\frac{5}{3}}=c$ to get $T V^{\frac{2}{3}}=c$ hence $T_{\mathrm{C}}=T_{\mathrm{A}}\left(\frac{V_{\mathrm{A}}}{V_{\mathrm{C}}}\right)^{\frac{2}{3}}=612 \times 0.5^{\frac{2}{3}}=385.54$ « $T_{\mathrm{C}} \approx 386 \mathrm{~K} »$ ALTERNATIVE 2 $\begin{aligned} & P_{\mathrm{C}} V_{\mathrm{C}}^{\gamma}=P_{\mathrm{A}} V_{\mathrm{A}}^{\gamma} \text { giving } P_{\mathrm{C}}=1.26 \times 10^{6} « \mathrm{~Pa} » \checkmark \\ & \frac{P_{\mathrm{C}} V_{\mathrm{C}}}{T_{\mathrm{C}}}=\frac{P_{\mathrm{A}} V_{\mathrm{A}}}{T_{\mathrm{A}}} \text { giving } T_{\mathrm{C}}=1.26 \times \frac{612}{2}=385.54 « \mathrm{~K} » \checkmark \\ & « T_{\mathrm{C}} \approx 386 \mathrm{~K} » \end{aligned}$	Answer of 386K is given. Look carefully for correct working if answers are to $3 S F$. There are other methods: Allow use of $P_{\mathrm{B}}=2 \times 10^{6}$ «Pa» and $\frac{P}{T}$ is constant for $B C$. Allow use of $n=0.118$ and $T_{\mathrm{C}}=\frac{P_{\mathrm{C}} V_{\mathrm{C}}}{n R}$.	2
	a	iii	$\begin{aligned} & Q=\Delta U+W=\frac{3}{2} \frac{P_{\mathrm{A}} V_{\mathrm{A}}}{T_{\mathrm{A}}} \Delta T+0 \checkmark \\ & Q=\frac{3}{2} \times \frac{4.00 \times 10^{6} \times 1.50 \times 10^{-4}}{612} \times(386-612) \\ & \text { «-332 J» } \end{aligned}$	Answer of 330 J given in the question. Look for correct working or more than 2 SF.	2

(continued...)
(Question 7 continued)

Question			Answers	Notes	Total
	a	iv	$\begin{aligned} & e=\frac{Q_{\text {in }}-Q_{\text {out }}}{Q_{\text {in }}}=\frac{416-332}{416} \\ & e=0.20 \checkmark \end{aligned}$	Allow $\frac{416-330}{416}$. Allow $e=0.21$.	2
	b		entropy is largest at $B \checkmark$ entropy increases from A to B because $T=$ constant but volume increases so more disorder or $\Delta S=\frac{Q}{T}$ and $Q>0$ so $\Delta S>0 \checkmark$ entropy is constant along CA because it is adiabatic, $Q=0$ and so $\Delta S=0$ OR entropy decreases along BC since energy has been removed, $\Delta Q<0$ so $\Delta S<0 \checkmark$		3

Option C - Imaging

| Question | | | Answers | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8. | a | line of correct curvature as shown \checkmark | | |

(Question 8 continued)

Question		Answers	Notes	Total
	b	wave travels slower in glass than in air OR RI greater for glass \checkmark wavelength less in glass than air \checkmark hence wave from Q will cover a shorter distance «than in air» causing the curvature shown \checkmark	OWTTE	2 max
	c	realization that the two lenses must have a common focal point \checkmark distance is $12-4.0=8.0$ «cm» \checkmark	Accept MP1 from a separate diagram or a sketch on the original diagram. A valid reason from MP1 is expected. Award [1 max] for a bald answer of 12-4=8 «cm».	2

Question			Answers	Notes	Total
10.	a		calculation of critical angle at core-cladding boundary $« 1.52 \times \sin \theta_{C}=1.48 » \theta_{C}=76.8^{\circ}$ refraction angle at air-core boundary $90^{\circ}-76.8^{\circ}=13.2^{\circ} \checkmark$ $« 1.52 \times \sin 13.2^{\circ}=\sin A » A=20.3^{\circ}$	Allow ECF from MP1 to MP2 to MP3.	3
	b	i	attenuation: output signal has smaller area dispersion: output signal is wider than input signal	OWTTE OWTTE	2
	b	ii	$\begin{aligned} & \text { attenuation }=« 10 \log \frac{I}{I_{0}}=10 \log \frac{77}{320}=» «-» 6.2 « \mathrm{~dB} » \\ & \frac{-6.2}{5.1}=«-» 1.2 « \mathrm{~dB} \mathrm{~km}^{-1} » \checkmark \end{aligned}$	Allow intensity ratio to be inverted. Allow ECF from MP1 to MP2.	2

Option D - Astrophysics

Question			Answers	Notes	Total
11.	a		core: helium outer layer: hydrogen \checkmark	Accept no other elements.	2
	b		ratio of masses is $\left(\frac{10^{4}}{10^{-3}}\right)^{\frac{1}{3.5}}=10^{2} \checkmark$ ratio of volumes is $\left(\frac{10}{10^{-1}}\right)^{3}=10^{6}$ so ratio of densities is $\frac{10^{2}}{10^{6}}=10^{-4} \checkmark$	Allow ECF for MP3 from earlier MPs	3
	C	i	line to the right of X, possibly undulating, very roughly horizontal \checkmark	Ignore any paths beyond this as the star disappears from diagram.	1
	C	ii	gravitation is balanced by a pressure/force due to neutrons/neutron degeneracy/pauli exclusion principle \checkmark	Do not accept electron degeneracy.	1
	C	iii	$L=\sigma A T^{4}=5.67 \times 10^{-8} \times 4 \pi \times\left(2.0 \times 10^{4}\right)^{2} \times\left(10^{6}\right)^{4} \quad \checkmark$ $L=3 \times 10^{26} \text { «W» }$ OR $L=2.85 \times 10^{26} \text { «W» }$	Allow ECF for [1 max] if πr^{2} used (gives 7×10^{25} « W ») Allow ECF for a POT error in MP1.	2
	c	iv	$\lambda=\frac{2.9 \times 10^{-3}}{10^{6}}=2.9 \times 10^{-9} \text { «m» }$ this is an X-ray wavelength \checkmark		2

Question			Answers	Notes	Total
12.	a		theory in which all space/time/energy/matter were created at a point/singularity at enormous temperature with the volume of the universe increasing ever since or the universe expanding \checkmark	OWTTE	2 max
	b		CMB has a black-body spectrum \checkmark wavelength stretched by expansion \checkmark is highly isotropic/homogenous \checkmark but has minor anisotropies predicted by BB model \checkmark $T «=2.7 \mathrm{~K} »$ is close to predicted value \checkmark	For MP4 and MP5 idea of "prediction" is needed	2 max
	C	i	$\begin{aligned} & \frac{v}{c}=z \Rightarrow v=0.084 \times 3 \times 10^{5}=2.52 \times 10^{4} « \mathrm{kms}^{-1} » \\ & d=\frac{v}{H_{0}}=\frac{2.52 \times 10^{4}}{68}=370.6 \approx 370 « \mathrm{Mpc} » \end{aligned}$	Allow ECF from MP1 to MP2.	2
	C	ii	type la have a known luminosity/are standard candles \checkmark measure apparent brightness \checkmark determine distance from $d=\sqrt{\frac{L}{4 \pi b}} \checkmark$	Must refer to type la. Do not accept other methods (parallax, Cepheids)	3

